Energy plantations technology on contaminated land

2008-2011

Project CZ0092 supported by the Financial Mechanism of Norway

Promoter

Czech University of Life Sciences in Prague

Partner no. 1

Bioforsk, Norwegian Institute for Agricultural and Environmental Research

Partner no. 2

Project background

Negative consequences on quantity and quality of agricultural production

Project aims...

- 1) to explore potential of alternative use of contaminated land for biomass production by means of short rotation coppice plantations (SRC)
- 2) to reduce risks of further spread of pollutants by phytoremediation

Short rotation coppice plantation

Initial growth

Plantation at age 3-5 y

Coppice outgrowth

Reproduced from: FOCUS Syracuse report 2006

Project levels

In vitro exp.

Pot exp.

Field

Mycorrhizal symbioses

Ectomycorrhizae (ECM)

Arbuscular mykorhizae (AM)

Fungal effect on growth of Salix alba and Populus nigra

HME = low accumulating, tolerant ECM fungus GIN = tolerant AM fungus

Fungal effect on risk elements accumulation in Salix alba and Populus nigra

Model plantations in Příbramsko region

2 localities

- "Komín" MEDIUM level of contamination
- "Litávka" HIGH level of contamination

Heterogeneous spatial distribution of RE pollution

Plantation "Komin" - stages

Planting 2008 at Komin plantation (medium pollution)

Experimental treatments:

Control (K) – no treatment

Fertilized (H) - 75t/ha sewage sludge (~ cca 400kg N/ha a 60kg P/ha)

Inoculated (M) - fungal mixture (4EcM,3AM), some native

Inoculated and fertilized (MH) - both M and H

Code	Clone	<u>Sex</u>	<u>Origin</u>
VB1	(Salix viminalis x S. schwerinii) x S. viminalis Tordis	female	Sweeden
VB2	S. x smithiana Willd. S-218	female	CR
TP1	Populus nigra L. × P. maximowiczii Max 4	female	Japan
TP2	P. nigra L. Wolterson	female	Netherland

Biomass production: "komín" 2008-2010

Plantation "Litavka"

Phytoremediation efficacy RE quantity removed by biomass [g/ha*rok] Cd 70 Cd 130 Pb 50 Pb 120 Zn 270 Zn 580 **Fertilization** control +inoculation

Phytoremediation balance

Plantation establishment

Fertilization +inoculation

Biomass harvest + incineration After 25y:

Cd 4kg/ha Zn 20kg/ha Pb 4kg/ha

Share of total soil RE pool

Cd ~15% Zn ~2% Pb ~0.1%

Incineration of contaminated biomass

- by filtering of flue gas most risk elements may be removed
- filtering by cyclone filters may not be sufficient and in moderate to high contamination levels the sleeve filters are required

Conclusions

- symbiotic fungi may modulate flow of risk elements from soil to plants
- selection of tree clones is most influential factor on biomass yield in field
- sewage sludge is convenient energy plantations fertilizer
- incineration of contaminated biomass is safe provided the efficient filtering of flue gas
- growing energy plantations on contaminated land represents feasible use of such land; however, the soil remediation is slow and inefficient

Thank you for your attention!

