

PilotCCS collaboration between Norway-Czech Republic – lessons learned

- Relation CCS front runner and power generation expert
- Czech Republic has one of the only IGCC plant in Europe
- Strong industrial involvement in the project
- CCS activities performed in the project relevant for both countries

Small downside: Heavy administration and reporting...

PilotCCS - achievements

Deeper technology understanding

- CCS strategy for lignite-based IGCC plant
 - Pre-combustion part
 - Lignite specific challenges
- Low-temperature capture
 - Impact of partial pressure and CO₂ capture ratio
- Membrane-based capture
 - Polymeric H₂-selective and CO₂-selective membranes for post-combustion capture
- Impact of impurities on CO₂ transport
 - Energy and cost performances for pipeline export
 - Removal of impurities and process design for train transport
- Train-based transport
 - One of the first techno-economic analyse on train-transport
 - Understand of competitiveness of both transport options

PilotCCS - achievements

- Strong disseminations:
 - Several conference presentation (GHGT-13, TCCS, SCPPE, Friedberg conference...)
 - Several seminar (Oslo, Prague, Lausanne, Trondheim)
 - Several journal papers in high impact journals

International Journal of Greenhouse Gas Control 65 (2017) 235-250

Contents lists available at ScienceDirect

International Journal of Greenhouse Gas Control

journal homepage: www.elsevier.com/locate/ijggc

Techno-economic evaluation of CO_2 transport from a lignite-fired IGCC plant in the Czech Republic

Simon Roussanaly^{a,*}, Geir Skaugen^a, Ailo Aasen^a, Jana Jakobsen^a, Ladislav Vesely^b

^a SINTEF Energy Research, Sem Sælandsvei 11, NO-7465 Trondheim, Norway

b Czech Technical University in Prague, Faculty of Mechanical Engineering, Department of Energy Engineering, Czech Republic

Some of the activities performed in PilotCCS are to continue in other projects

Deployment case 1: CCS for Norwegian Industry

- 1) CCS value chain and legal issues
- 2) Solvent environmental issues
- 3) Low emission H2 production
- 4) CO2 capture by liquefaction
- 5) Gas turbines
- 6) CO₂ capture process integration

- 7) CO₂ transport
- 8) Fiscal metering and CO₂ thermodynamics
- 9) Structural derisking
- 10) Containment
- 11) Reservoir management and EOR
- 12) Monitoring technologies

Deployment case 2: Storing Europe's CO₂ in the North Sea basin

Centre for intelligent electricity distribution – CINELDI

The Research Centre on Zero Energy
Neighbourhoods in Smart Cities – ZEN Centre

Deployment case 1: CCS for Norwegian Industry

1) CCS value chain and legal issues

- 2) Solvent environmental issues
- 3) Low emission H2 production
- 4) CO2 capture by liquefaction
- 5) Gas turbines
- 6) CO₂ capture process integration

- 7) CO₂ transport
- 8) Fiscal metering and CO₂ thermodynamics
- 9) Structural derisking
- 10) Containment
- 11) Reservoir management and EOR
- 12) Monitoring technologies

Deployment case 2: Storing Europe's CO₂ in the North Sea basin

A world-leading partnership

Development of low-temperature based CO₂ capture

Development of low-temperature based CO₂ capture

- Laboratory pilot testing of the CO₂ liquefaction and purification unit
 - · Test facility under commissioning
 - Experimental verification of CO₂ separation ratio and product purity
 - Comparison with theoretically obtainable performance
- Gas mixtures in consideration:
 - Short-term: CO₂ + N₂
 - Mid-term: CO₂ + H₂
- Pressure levels:
 - Up to 120 bar
- Temperature levels:
 - Down to -55°C
- Capacity:
 - Approximately 10 ton CO₂ per day

Teknologi for et bedre samfunn